Define
 by
 by
 
 
 
[3]()
[1]
Give the domain of  
 
![\(\text{%
\subprob[1]
Give the codomain of \(f.\)}\)](img7.png) 
 
[1]
Give the range of  
 
Define
 by
 by
 
 
![$\sqrt[5]{x} - 7.$](img11.png) 
Define
 by
 by
 
 
![$\sqrt[7]{x} - 5.$](img12.png) 
[1]
Prove or reasonably explain that  is 1-1.
 is 1-1.
[2]()
 
 
 
![$\sqrt[5]{x_{{}_{1}} - 7}$](img16.png) 
 
![$\sqrt[5]{x_{{}_{2}} - 7}$](img17.png) 
![$\sqrt[5]{x_{{}_{1}}}$](img18.png) 
 
![$\sqrt[5]{x_{{}_{2}}}$](img19.png) 
![$\left(\sqrt[5]{x_{{}_{1}}}\right)^{5}$](img20.png) 
 
![$\left(\sqrt[5]{x_{{}_{2}}}\right)^{5}$](img21.png) 
 
 
 
 
 
 
![$\sqrt[7]{x_{{}_{1}} - 5}$](img24.png) 
 
![$\sqrt[7]{x_{{}_{2}} - 5}$](img25.png) 
![$\sqrt[7]{x_{{}_{1}}}$](img26.png) 
 
![$\sqrt[7]{x_{{}_{2}}}$](img27.png) 
![$\left(\sqrt[7]{x_{{}_{1}}}\right)^{7}$](img28.png) 
 
![$\left(\sqrt[7]{x_{{}_{2}}}\right)^{7}$](img29.png) 
 
 
 
[1]
Prove or reasonably explain that  is onto.
 is onto.
Since
 is continuous,
 is continuous,
 
 
 and
and
 
 
 
 is onto by the .
 is onto by the .
[1]
Find the inverse of  
[2]()
 
 
![$\sqrt[5]{x} - 7$](img35.png) 
![$\sqrt[5]{x}$](img36.png) 
 
 
 
 
 
 
 
![$\sqrt[7]{x} - 5$](img40.png) 
![$\sqrt[7]{x}$](img41.png) 
 
 
 
 
 
Define
 by
 by
 
 
 
[1]
Prove or reasonably explain that  is 1-1.
 is 1-1.
Since
 
 
 
 is strictly increasing which implies that it is 1-1.
 is strictly increasing which implies that it is 1-1.
[2]()
[1]
Calculate
 
 
 
 
[1]
Calculate
![$[\inv f;]'(\tm8)$](img49.png) 
![$[\inv f;]'(\tm8)$](img49.png) 
 
 
 
 
Calculate each of the following.
[3]()
[1]
 
 
 
 
 
 
[1]
 
Set
 
 
 
 
 
 
{50}{0}{10}
\end{picture}}
\end{picture}](img61.png) 
 
 
 
 
 
 
[1] Give the following as an algebraic expression in simplified form.
 
 
See class notes.
Differentiate.
[3]()
[1]
 
 
 
 
 
 
![\(\text{%
\subprob[1]
\(g(x)\)
\(=\)
\(\invsin\left(\x2 + x + 1\right)\)}\)](img68.png) 
 
 
 
[1]
 
 
 
 
 
 
[1] Integrate.
 
 
 
Total Points: