Theorem 1: For all \(x \in \mathbb{R} \), \(\sin^2 x + \cos^2 x = 1 \).

Corollary 2: For all \(x \in \text{dom}(\tan) \cap \text{dom}(\sec) \), \(\tan^2 x + 1 = \sec^2 x \).

Corollary 3: For all \(x \in \text{dom}(\cot) \cap \text{dom}(\csc) \), \(\cot^2 x + 1 = \csc^2 x \).

Theorem 4: For all \(x, y \in \mathbb{R} \),

(i) \(\sin(x + y) = \sin x \cos y + \cos x \sin y \);

(ii) \(\cos(x + y) = \cos x \cos y - \sin x \sin y \).

Corollary 5 (Double-Angle Formulas): For all \(x \in \mathbb{R} \),

(i) \(\sin(2x) = 2\sin x \cos x \);

(ii) \(\cos(2x) = \cos^2 x - \sin^2 x = 2\cos^2 x - 1 = 1 - 2\sin^2 x \).

Corollary 6 (Half-Angle Formulas): For all \(x \in \mathbb{R} \),

(i) \(\sin^2 \frac{x}{2} = \frac{1 - \cos x}{2} \);

(ii) \(\cos^2 \frac{x}{2} = \frac{1 + \cos x}{2} \).

Theorem 7: For all \(x, y \in \mathbb{R} \),

(i) \(\sin x \cos y = \frac{1}{2}[\sin(x-y) + \sin(x+y)] \);

(ii) \(\cos x \cos y = \frac{1}{2}[\cos(x-y) + \cos(x+y)] \).

(iii) \(\sin x \sin y = \frac{1}{2}[\cos(x-y) - \cos(x+y)] \).

Theorem 8: Let \(a, b \in \mathbb{R} \) with \(a \leq b \) and suppose that \(f : [a, b] \to \mathbb{R} \) such that \(f' \) is continuous. The length of the curve \(y = f(x) \) from \(a \) to \(b \) is \(\int_a^b \sqrt{1 + [f'(x)]^2} \, dx \).

Theorem 9: Suppose that \(f \) is a function such that \(f' \) is continuous and \(f(x) \geq 0 \) for all \(x \in [a, b] \). Also, let \(\mathcal{R} \) be the region bounded by the curves \(y = f(x) \), \(x = a \), \(x = b \), and the \(x \)-axis. Then the surface area of the solid formed by revolving \(\mathcal{R} \) about the \(x \)-axis is

\[
\int_a^b 2\pi f(x) \sqrt{1 + [f'(x)]^2} \, dx.
\]

Theorem 10: Suppose that \(f : \mathbb{R} \to \mathbb{R} \) is continuous and non-negative on the closed interval \([a, b]\) and let \(\mathcal{R} \) be the region bounded by the curves \(x = a \), \(x = b \), \(y = 0 \), and \(y = f(x) \). Also, let \(A \) be the area of \(\mathcal{R} \). Then the center of mass of \(\mathcal{R} \) is \((\overline{x}, \overline{y})\) where

\[
\overline{x} = \frac{1}{A} \int_a^b x f(x) \, dx \quad \text{and} \quad \overline{y} = \frac{1}{A} \int_a^b \frac{1}{2} [f(x)]^2 \, dx.
\]

Theorem 11: Suppose that \(f : \mathbb{R} \to \mathbb{R} \) and \(g : \mathbb{R} \to \mathbb{R} \) are continuous and \(f(x) \leq g(x) \) on the closed interval \([a, b]\) and let \(\mathcal{R} \) be the region bounded by the curves \(x = a \), \(x = b \), \(y = f(x) \), and \(y = g(x) \). Also, let \(A \) be the area of \(\mathcal{R} \). Then the center of mass of \(\mathcal{R} \) is \((\overline{x}, \overline{y})\) where

\[
\overline{x} = \frac{1}{A} \int_a^b x [g(x) - f(x)] \, dx \quad \text{and} \quad \overline{y} = \frac{1}{A} \int_a^b \frac{1}{2} [(g(x))^2 - (f(x))^2] \, dx.
\]
Theorem 12 (Divergence Test): If the series $\sum_{n=1}^{\infty} x_n$ converges, then $\lim_{n \to \infty} x_n = 0$.

Theorem 13 (Comparison Test): Suppose that $\sum_{n=1}^{\infty} x_n$ and $\sum_{n=1}^{\infty} y_n$ are series such that $0 \leq x_n \leq y_n$ for all $n \in \mathbb{N}$. If $\sum_{n=1}^{\infty} y_n$ converges, then $\sum_{n=1}^{\infty} x_n$ converges. If $\sum_{n=1}^{\infty} x_n$ diverges, then $\sum_{n=1}^{\infty} y_n$ diverges.

Theorem 14: Let $a, r \in \mathbb{R}$ with $a, r \neq 0$.

(i) If $|r| < 1$, then $\sum_{n=0}^{\infty} ar^n = \frac{a}{1 - r}$;

(ii) if $|r| \geq 1$, then $\sum_{n=0}^{\infty} ar^n$ diverges.

Theorem 15 (Limit Comparison Test): Suppose that $\sum_{n=1}^{\infty} x_n$ and $\sum_{n=1}^{\infty} y_n$ are series such that $x_n \geq 0$ and $y_n \geq 0$ for all $n \in \mathbb{N}$. If $\lim_{n \to \infty} \frac{x_n}{y_n} = L \in \mathbb{R}$ such that $L > 0$, then $\sum_{n=1}^{\infty} x_n$ converges if and only if $\sum_{n=1}^{\infty} y_n$ converges.

Theorem 16 (Integral Test): Suppose that $f : [1, \infty) \to \mathbb{R}$ is a continuous decreasing function with $f(x) > 0$ for all $x \in [1, \infty)$. Then the series $\sum_{n=1}^{\infty} f(n)$ converges if and only if the improper integral $\int_{1}^{\infty} f(x) \, dx$ converges.

Theorem 17 (Alternating Series Test): Let $\{x_n\}_{n=1}^{\infty}$ be a decreasing sequence of positive numbers. Then $\sum_{n=1}^{\infty} (-1)^n x_n$ and $\sum_{n=1}^{\infty} (-1)^{n+1} x_n$ converge if and only if $\lim_{n \to \infty} x_n = 0$.

Theorem 18 (The Ratio Test): Let $\{x_n\}_{n=1}^{\infty}$ be a sequence. If $\lim_{n \to \infty} \left| \frac{x_{n+1}}{x_n} \right| = L < 1$, then the series $\sum_{n=1}^{\infty} x_n$ converges absolutely. If $\lim_{n \to \infty} \left| \frac{x_{n+1}}{x_n} \right| = L > 1$ or $\lim_{n \to \infty} \left| \frac{x_{n+1}}{x_n} \right| = \infty$, then the series $\sum_{n=1}^{\infty} x_n$ diverges.
Theorem 19 (The Root Test): Let \(\{x_n\}_{n=1}^{\infty} \) be a sequence. If \(\lim_{n \to \infty} \sqrt[n]{|x_n|} = L < 1 \), then the series \(\sum_{n=1}^{\infty} x_n \) converges absolutely. If \(\lim_{n \to \infty} \sqrt[n]{|x_n|} = L > 1 \) or \(\lim_{n \to \infty} \sqrt[n]{|x_n|} = \infty \), then the series \(\sum_{n=1}^{\infty} x_n \) diverges.

Theorem 20: Let \(\sum_{n=0}^{\infty} c_n (x - a)^n \) be a power series in \(x - a \) with coefficient set \(\{c_n\}_{n=1}^{\infty} \). Then one of the following is true.

(i) The power series \(\sum_{n=0}^{\infty} c_n (x - a)^n \) converges only if \(x = a \).

(ii) The power series \(\sum_{n=0}^{\infty} c_n (x - a)^n \) converges for all \(x \in \mathbb{R} \).

(iii) There is a number \(R > 0 \) such that the power series \(\sum_{n=0}^{\infty} c_n (x - a)^n \) converges absolutely for all \(x \in (a - R, a + R) \) and diverges for all \(x \notin [a - R, a + R] \).

Theorem 21: Let \(a \in \mathbb{R} \) and \(\{c_n\}_{n=0}^{\infty} \) be a sequence of real numbers such that the power series \(\sum_{n=0}^{\infty} c_n (x - a)^n \) has radius of convergence \(R > 0 \) or \(\infty \) and interval of convergence \(I \). Define \(f : I \to \mathbb{R} \) by \(f(x) = \sum_{n=0}^{\infty} c_n (x - a)^n \). Then

(i) \(f \) is differentiable on \(\text{int}(I) \) and \(f'(x) = \sum_{n=1}^{\infty} c_n (x - a)^{n-1} \) which has the same radius of convergence as \(\sum_{n=0}^{\infty} c_n (x - a)^n \);

(ii) \(\int f(x) \, dx = \sum_{n=0}^{\infty} c_n \frac{(x - a)^{n+1}}{n+1} + C \) which has the same radius of convergence as \(\sum_{n=0}^{\infty} c_n (x - a)^n \).
Theorem 22: Suppose that \(\mathcal{C} \) is a smooth curve with parametric equations \(x = f(t) \) and \(y = g(t) \). Then the slope of the tangent line to \(\mathcal{C} \) at a point \((x_0, y_0) = (f(t_0), g(t_0))\) is \(\frac{g'(t_0)}{f'(t_0)} \) provided \(f'(t_0) \neq 0 \).

Theorem 23: Let \(\mathcal{C} \) be a plane curve with parametric equations \(x = f(t) \) and \(y = g(t) \). Also, suppose that \(f : [a, b] \to \mathbb{R} \) and \(g : [a, b] \to \mathbb{R} \) are differentiable and for all \(t_1, t_2 \in [a, b] \) with \(t_1 < t_2 \), \((f(t_1), g(t_1)) = (f(t_2), g(t_2)) \) if and only if \(t_1 = a \) and \(t_2 = b \). Then the area of the region enclosed by \(\mathcal{C} \) is
\[
\int_a^b f(t)g'(t)\,dt = \int_a^b (g(t)f'(t))\,dt.
\]

Theorem 24: Let \(\mathcal{C} \) be a smooth plane curve with parametric equations \(x = f(t) \) and \(y = g(t) \). Also, suppose that \(f : [a, b] \to \mathbb{R} \) and \(g : [a, b] \to \mathbb{R} \) such that for all \(t_1, t_2 \in [a, b] \) with \(t_1 < t_2 \), \((f(t_1), g(t_1)) = (f(t_2), g(t_2)) \) implies that \(t_1 = a \) and \(t_2 = b \). Then the arc length of \(\mathcal{C} \) is
\[
\int_a^b \sqrt{[f'(t)]^2 + [g'(t)]^2}\,dt.
\]

Theorem 25: Let \(\mathcal{C} \) be a smooth plane curve with parametric equations \(x = f(t) \) and \(y = g(t) \). Also, suppose that \(f : [a, b] \to \mathbb{R} \) and \(g : [a, b] \to [0, \infty) \) such that for all \(t_1, t_2 \in [a, b] \) with \(t_1 < t_2 \), \((f(t_1), g(t_1)) = (f(t_2), g(t_2)) \) implies that \(t_1 = a \) and \(t_2 = b \). Then the surface area of the solid formed by rotating \(\mathcal{C} \) about the \(x \)-axis is
\[
\int_a^b 2\pi g(t)\sqrt{[f'(t)]^2 + [g'(t)]^2}\,dt.
\]

Theorem 26: Let \(a, b \in \mathbb{R} \) with \(0 \leq a < b \leq 2\pi \). Also, suppose that \(f : [a, b] \to \mathbb{R} \) is continuous and \(f(\theta) \geq 0 \) for all \(\theta \in [a, b] \). Then the area of the region bounded by the polar curves, \(\theta = a \), \(\theta = b \), and \(r = f(\theta) \) is
\[
\frac{1}{2} \int_a^b [f(\theta)]^2\,d\theta = \frac{1}{2} \int_a^b r^2\,d\theta.
\]

Theorem 27: Let \(f : [a, b] \to \mathbb{R} \) such that \(f' \) is continuous and suppose that \(\mathcal{C} \) is the graph of the curve with polar equation \(r = f(\theta) \). Then the length of \(\mathcal{C} \) is
\[
\int_a^b \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2}\,d\theta = \int_a^b \sqrt{r^2 + \left(\frac{df}{d\theta}\right)^2}\,d\theta.
\]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Measurement</th>
<th>Metric</th>
<th>U.S. Customary</th>
<th>Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m)</td>
<td>mass</td>
<td>kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(g)</td>
<td>acceleration due to gravity</td>
<td>9.8 m/s(^2)</td>
<td>32 ft/s(^2)</td>
<td></td>
</tr>
<tr>
<td>(A)</td>
<td>area of horizontal plate</td>
<td>m(^2)</td>
<td>ft(^2)</td>
<td></td>
</tr>
<tr>
<td>(\rho)</td>
<td>mass density</td>
<td>kg/m(^3)</td>
<td></td>
<td>(\delta = \rho g)</td>
</tr>
<tr>
<td>(\delta)</td>
<td>weight density</td>
<td>lb/ft(^3)</td>
<td></td>
<td>(P = \rho gd = \delta d)</td>
</tr>
<tr>
<td>(P)</td>
<td>pressure</td>
<td>N/m(^2) = 1 Pa</td>
<td></td>
<td>(F = mg = \rho gdA = \delta dA = PA)</td>
</tr>
<tr>
<td>(F)</td>
<td>force</td>
<td>lb</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>